Magnetic cirents

· Motivation: Magnetic circuits provide the Heory behind transformers. It will also provide the basics to study electromechanical energy conversion later in the course.

· Key ideas to learn:

1) current produces magnetic field.
2) changing flux drives a voltage.

We can utilize these together to make inductors & transformers.

- · Key concepts that will help us:
 - · lyanss' law part of Maxwell's eg's.
 - · Faraday's lan

Geometry of
$$S$$
 and E in applying S in applying S that S discretion of S depends on S and S in applying S discretion of S depends on S and S is S discrete by the right hand rule. Back to our example:

 $|\overrightarrow{H}(Y)| = 2\pi Y = i \Rightarrow |\overrightarrow{H}(Y)| = \frac{i}{2\pi Y}$

Notation: View from the top.

Ampere's law >>

 $\int_{\mathcal{C}} \vec{H} \cdot \vec{U} = \int_{\mathcal{S}} \vec{J}_{1} \cdot \hat{n} da$

· Consider an iron piece with a cross piece with a cross sectional area A, and an average length around the loop being L as shown. as shown.

Assume that H has uniform magnitude throughout the iron piece, compute ifs magnitude.

Ampère's law yields H. L = N.2 $\Rightarrow H = N^{\circ}$

Unit of H? Ampere-turns/meter. The magnetic field H magnetizes the iron core. Assume that it is a "linear magnetic material."

Linear magnetic material ⇒ 灵《明, where $\vec{B} = \frac{\text{magnetic flux density}}{\text{magnetic flux density}}$ B

H. The proportionality constant depends on the material in which the magnetic field exists. It is called the permeability of the material, devoted by μ . : B = µ H' In our example, $H = \frac{N_i^2}{1}$ $\Rightarrow B = \frac{\mu N}{i} \cdot i$ Magnetic flux through the material is given by Sids, denoted cross-sectional area

denoted by p.

9n our example,
$$\phi = B \cdot A$$

$$= \mu N_i^2 A$$
• Units: ϕ is measured in Webers (Nb).

 \vec{B} " " Wb/m, also called Tesla.

• Let's book at this relation a little more closely.

 $\phi = \mu N_i A = \frac{N_i^2}{L/\mu A}$

This equation looks like current $(\phi) = \frac{EMF(N_i^2)}{Vesistance(L/\mu A)}$

Due to this resemblence, we call

 N_i^2 as magneto-motive force (mmf) F , $\frac{L}{\mu A}$ as refunctance R .

1/R is often called permeance.

The more magnetizeable a material is, the larger its μ is.

⇒ the smaller its reluctance
$$R = L$$

just

⇒ the larger the flux $\phi = F/R$

that flows through the material.

• The equation $\phi = F/R$ suggests that one can draw a hypothetical magnetic circuit $F = N_i$ $F = N_i$

· Does flux satisfy a kirchhof's current law type relation? Yes, indeed & This is given by Gauss' law that states $\oint \vec{B} \cdot d\vec{s} = 0$ a closed Surface RCL says summation of currents leaving a pt. in the circuit = 0 11+12+13+14=0. i3 + i2 Let's write this relation in integral form. $\int \int d\vec{s}' = 0$... Similar to Games' (aw. 753

N fightly wound coils.

Length L

· Consider the iron piece of uniform cross sectional area A. Assume that the air gap has length g. The iron has a permeability of μ and air has permeability of μ . Calculate the magnetic flux through the core.

Magnetic circuit: $R = \frac{L}{MA}$, $R_g = \frac{Lg}{M_0 A}$.

$$F=N_i$$

· The magnetic circuit is not a vircuit through which current flows. It is an abstraction that allows he to circumvent the use of Ampere's law & Games law, by using Ohm's law type relations. V. Imp! • $\mu_0 = 4\pi \times 10^{-7}$ SI units. Units of μ_0 = Tesla - meter/Ampere, = Wb/Amp-meter .. 6.3×10^{-3} Wb/Am.

Often transformer cores use cobalt-iron, that

Often transformer cores use cobalt-iron, that has a relative permeability $\mu_{\nu} \approx 18,000$. $\Rightarrow R_{air-gap} >> R_{iron}$.

Assume uniform cross-section A of the iron with permeability
$$\mu$$
. Compute ϕ as shown

· Another

of the iron piece of as shown. assume Magnefic circuit:

F=Ni

 $R_b = \frac{b}{\mu A}$ To compute let's reluctances. club

$$Reg = (2R_b + R_g) | | (2R_a + 2R_b + R_g).$$

$$\therefore \phi = \frac{-F}{2R_a + 2R_b + (2R_b + R_g) | | (2R_a + 2R_b + R_g)}$$

The notation $R_1 \parallel R_2 := \frac{R_1 R_2}{R_1 + R_2}$.

Notice that if the current changes, so will the flux, and hence, the flux linkage with the coil.

 $A = N\phi$. Voltage induced $V = \frac{dA}{dt}$

 \Rightarrow $v = \frac{d}{dt}(N\phi)$

 $= N. \frac{d}{dt} \left[\frac{N_i^o}{\frac{L}{\mu A} + \frac{Lg}{\mu o A}} \right]$

= $\frac{1}{2}$. $\frac{d^{\circ}}{dt}$.

Z is called the self-inductance or inductance of the coil.

 $= \frac{N^2}{\frac{L}{\mu A} + \frac{L_g}{\mu A}} \cdot \frac{di}{dt}$

Flux linked with the coil

• Where does $v = \frac{dl}{dt}$ come from? Faraday's law: $\oint \vec{E} \cdot d\vec{l} = -d \oint \vec{E} \cdot d\vec{s}$ \mathcal{S} : open surface, \mathcal{E} : contour of \mathcal{S}

S: open surface, E; contour of S

to simplify, let's consider

one loop.

Let's Look at this from the top.

Black dotted line defines

Black dotted line defines \mathcal{E} that encloses the currence \mathcal{G} . $\phi \vec{E} \cdot d\vec{l} = -v$. $\phi \vec{B} \cdot d\vec{s} = \phi$. $\phi \vec{B} \cdot d\vec{s} = \phi$. $\phi \vec{B} \cdot d\vec{s} = \phi$. · In our derivation, we have need $R_{iron} = \frac{L}{\mu A}$, $R_{air-gap} = \frac{Lg}{\mu A}$. Assumption: The uniform flux path inside the conductor also induces uniform flux through the air-gap. · Rair gab = Lg

Mo A Reality: Total flux inside the iron core = Biron. Airon Flux in air-gap = Bair-gap. Aairgap. A air gap > Airon ... due to fringing of the flux-paths. Sometimes, one uses Aairgap = 1.1 Airon.